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1. Introduction

The non-perturbative quantization of String Theory is still an open problem which has

received recently a lot of attention. It can be reformulated in terms of the quantization of

the M-theory in 11 dimensions. In spite of the advances towards its quantization ([1]–[10]),

M-theory is a not well understood theory. The goal to achieve is to obtain a consistent

quantum theory in 4D with an N = 1 or N = 0 supersymmetries, moduli free, in agreement

with the observed 4D physics. Attempts to formulate the theory in 4D have been done in

the supergravity approach [11, 12], including fluxes [13, 14], but so far no exact formulation

has been found. The theory when compactified to a 4D model contains many vacua due

to the presence of moduli fields. Stabilizacion of these moduli is an important issue to be

achieved. For some interesting proposals see [13, 15]. In the following we will consider the

11D M2-brane with irreducible wrapping on the compact sector of the target manifold [16].

This implies the existence of a non trivial central charge in the supersymmetric algebra.

Its spectral properties have been obtained in several papers [5]–[10]. Summarizing them:

classically it does not contain singular configuration with zero energy, and quantically its

regularized bosonic and supersymmetric hamiltonians have a discrete spectrum with finite

multiplicity. This proof has been extended to the exact case for the bosonic sector of a

supermembrane with central charges compactified in a 2-torus. Extensions of this proof to

the supersymmetric case and other target manifolds are currently under study.

The purpose of this paper is to construct the action for the supermembrane with non-

trivial central charges compactified on a T 7 and analyze its physical properties. The action

describes a supermembrane evolving in a 4D Minkowski space. It is invariant under SUSY

with a Majorana 32 component spinor parameter however the symmetry is spontaneously
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broken to a N = 1 theory in 4 dimensions when the minimal configuration is fixed. A

detailed analysis of the compactification properties will be given elsewhere [17]. When the

compactification manifold is considered to be an isotropic T 7 i.e. all the radii are equal,

the potential has no flat directions, it is stable in the moduli space of parameters.

The paper is structured as follows: section 2 is devoted to explain the construction of

the supermembrane with central charges. In section 3 we show how the compactification

on the remaining 7-coordinate is performed to obtain a 4D action of the supermembrane.

Section 4 shows explicitly the spontaneous breaking of supersymmetry. In section 5 we

perform the analysis of the spectral properties of the theory. In section 6 we analyze some

physical properties as mass generation and moduli stabilization due to the topological

condition and finally we present our conclusions in section 7.

2. D=11 supermembrane with central charges on a M5 × T
6 target man-

ifold

The hamiltonian of the D = 11 Supermembrane [18] may be defined in terms of maps

XM , M = 0, . . . , 10, from a base manifold R × Σ, where Σ is a Riemann surface of genus

g onto a target manifold which we will assume to be 11− l Minkowski × l-dim Torus. The

canonical reduced hamiltonian to the light-cone gauge has the expression

∫

Σ

√
W

(
1

2

(
PM√
W

)2

+
1

4

{
XM ,XN

}2
+ Fermionic terms

)
(2.1)

subject to the constraints

φ1 := d

(
pM√
W

dXM

)
= 0 (2.2)

and

φ2 :=

∮

Cs

PM√
W

dXM = 0, (2.3)

where the range of M is now M = 1, . . . , 9 corresponding to the transverse coordinates in

the light-cone gauge, Cs, s = 1, . . . , 2g is a basis of 1-dimensional homology on Σ,

{XM ,XN} =
ǫab

√
W (σ)

∂aX
M∂bX

N . (2.4)

a, b = 1, 2 and σa are local coordinates over Σ. W (σ) is a scalar density introduced

in the light-cone gauge fixing procedure. φ1 and φ2 are generators of area preserving

diffeomorphisms. That is

σ → σ
′ → W

′

(σ) = W (σ).

When the target manifold is simply connected dXM are exact one-forms.

The SU(N) regularized model obtained from (2.1) was shown to have continuous spec-

trum from [0,∞), [1 – 3].
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This property of the theory relies on two basic facts: supersymmetry and the presence

of classical singular configurations, string-like spikes, which may appear or disappear with-

out changing the energy of the model but may change the topology of the world-volume.

Under compactification of the target manifold generically the same basic properties are

also present and consequently the spectrum should be also continuous [4]. In what fol-

lows we will impose a topological restriction on the configuration space. It characterizes a

D = 11 supermembrane with non-trivial central charges generated by the wrapping on the

compact sector of the target space [5, 6, 8, 10]. Following [9] we may extend the original

construction on a M9 × T 2 to M7 × T 4, M5 × T 6 target manifolds by considering genus

1, 2, 3 Riemann surfaces on the base respectively. Under such correspondence there exists

a minimal holomorphic immersion from the base to the target manifold. The image of Σ

under that map is a calibrated submanifold of T 2, T 4, T 6 respectively. The model in those

cases present additional interesting symmetries beyond the original ones [10].

We are interested in reducing the theory to a 4 dimensional model, we will then assume

a target manifold M4 × T 6 × S1. The configuration maps satisfy:
∮

cs

dXr = 2πSr
sRr r, s = 1, . . . , 6. (2.5)

∮

cs

dX7 = 2πLsR (2.6)

∮

cs

dXm = 0 m = 8, 9 (2.7)

where Sr
s , Ls are integers and Rr, r = 1, . . . , 6 are the radius of T 6 = S1×· · ·×S1 while R is

the radius of the remaining S1 on the target. This conditions ensure that we are mapping

Σ onto a Π7

i=1
S1

i sector of the target manifold.

We now impose the central charge condition

Irs ≡
∫

Σ

dXr ∧ dXs = (2πRrRs)ωrs (2.8)

where ωrs is a symplectic matrix on the T 6 sector of the target.

For simplicity we take ωrs to be the canonical symplectic matrix

M =




0 1

−1 0

0 1

−1 0

0 1

−1 0




. (2.9)

It corresponds to the orthogonal intersection of the three g = 1,i.e. three toroidal T 2 super-

membranes, the time direction being the intersecting space. The topological condition (2.8)

does not change the field equations of the hamiltonian (2.1). In fact, any variation of Irs

under a change δXr , single valued over Σ, is identically zero. In addition to the field equa-

tions obtained from (2.1), the classical configurations must satisfy the condition (2.8). It
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is only a topological restriction on the original set of classical solutions of the field equa-

tions. In the quantum theory the space of physical configurations is also restricted by

the condition (2.8). The geometrical interpretation of this condition has been discussed

in previous work [7, 16]. We noticed that (2.8) only restricts the values of Sr
s , which are

already integral numbers from (2.5).

We consider now the most general map satisfying condition (2.8). A closed one-forms

dXr may be decomposed into the harmonic plus exact parts:

dXr = M r
s dX̂s + dAr (2.10)

where dX̂s, s = 1, . . . , 2g is a basis of harmonic one-forms over Σ. We may normalize it by

choosing a canonical basis of homology and imposing

∮

cs

dX̂r = δr
s . (2.11)

We have now considered a Riemann surface with a class of equivalent canonical basis.

Condition (2.5) determines

M r
s = 2πRrLr

s. (2.12)

dAr are exact one-forms. We now impose the condition (2.8) and obtain

Sr
t ω

tuSs
u = ωrs, (2.13)

that is, S ∈ Sp(2g, Z). This is the most general map satisfying (2.8).

The natural election for
√

W (σ) in this geometrical setting is to consider it as the

density obtained from the pull-back of the Khäler two-form on T 6. We then define

√
W (σ) =

1

2
∂aX̂

r∂bX̂
sωrs. (2.14)

√
W (σ) is then invariant under the change

dX̂r → Sr
sdX̂s, S ∈ Sp(2g, Z) (2.15)

But this is just the change on the canonical basis of harmonics one-forms when a

biholomorphic map in Σ is performed changing the canonical basis of homology. That

is, the biholomorphic (and hence diffeomorphic) map associated to the modular transfor-

mation on a Teichmüller space. We thus conclude that the theory is invariant not only

under the diffeomorphisms generated by φ1 and φ2 but also under the diffeomorphisms, bi-

holomorphic maps, changing the canonical basis of homology by a modular transformation.

The theory of supermembranes with central charges in the light cone gauge (LCG) we

have constructed depends then on the moduli space of compact Riemanian surfaces Mg

only. It may be defined on the conformal equivalent classes of compact Riemann surfaces.

It shares this property with String Theory, although the supermembrane theory is still
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restricted by the area preserving constraints, there are area preserving diffeomorphisms

which are not conformal mappings. In addition, the supermembrane depends on the mod-

uli identifying the holomorphic immersion from Mg to the target manifold. This is an

interesting moduli space already considered in a different context in [19].

Having identified the modular invariance of the theory we may go back to the general

expression of dXr, we may always consider a canonical basis in away that

dXr = RrdX̂r + dAr. (2.16)

the corresponding degrees of freedom are described exactly by the single-valued fields Ar.

After replacing this expression in the hamiltonian (2.1) we obtain,

H =

∫

Σ

√
Wdσ1 ∧ dσ2

[
1

2

(
Pm√
W

)2

+
1

2

(
Πr

√
W

)2

+
1

4
{Xm,Xn}2 +

1

2
(DrX

m)2 +
1

4
(Frs)

2

+

∫

Σ

F+(2π)4(RrRs)4
∫

Σ

√
W (DrX̂s)

2+Λ

(
Dr

(
Πr√
W

)
+

{
Xm,

Pm√
W

})]

+

∫

Σ

√
W [−ΨΓ−ΓrDrΨ] + ΨΓ−Γm{Xm,Ψ} + Λ{ΨΓ−,Ψ}]

(2.17)

where DrX
m = DrX

m + {Ar,X
m}, Frs = DrAs − DsAr + {Ar, As},

Dr = 2πRr ǫab

√
W

∂aX̂
r∂b and Pm and Πr are the conjugate momenta to Xm and Ar respec-

tively. Dr and Frs are the covariant derivative and curvature of a symplectic noncom-

mutative theory [16, 6], constructed from the symplectic structure ǫab

√
W

introduced by the

central charge. We will take the integral of the curvature to be zero and the volume term

corresponds to the value of the hamiltonian at its ground state. The last term represents

its supersymmetric extension in terms of Majorana spinors. The physical degrees of the

theory are the Xm, Ar,Ψα they are single valued fields on Σ.

In [9] a T 4 compactification sector was considered. Its hamiltonian was expressed

in terms of a different frame for the compactified sector on the T 4 torus. In that case

the pullback is performed directly with the harmonic modes dX̂r while in the present

formulation the metric on that sector is δrs and the pullback should be performed with

G1/2dX̂ , G is the constant matrix introduced in [9]. In both cases the same scalar density√
W (σ) is obtained.

3. Compactification on the remaining S
1

The analysis of the compactification on the remaining S1 may be performed directly in the

above formalism or by considering its dual formulation in term of U(1) gauge fields. We

will discuss both approaches.

In the first case, we may solve the condition (2.6), we obtain

dX7 = RLsdX̂s + dφ̂ (3.1)

where dφ̂ is an exact 1-form and dX̂s as before are a basis of harmonic 1-forms over Σ.

For the discretness analysis at is more convenient to express dX7 in terms of the solution
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of the “covariant” laplacian over Σ:

DrDrX̃ = 0 (3.2)

where Dr, r = 1, . . . , 2g were defined in the previous section. There are 2g independent

solutions of (3.2). In fact, dX̃ is necessarily a linear combination of the basis of harmonic

1-forms plus exact forms. For each dX̂s there exists a unique φs, single-valued over Σ such

that

DrDrX̂
s + DrDrφ

s = 0. (3.3)

The most general solution for X̃1 satisfying DrDrX̃1 = 0 is then

dX̃1 = Ls(dX̂s + dφs), (3.4)

since the only solution in terms of pure exact forms is the trivial one. We notice

also that dX̂s + dφs s = 1, . . . , 2g are linearly independent. The most general solution

for DrDrX̃ = 0, at least perturbatively in Ar is of the same form (3.4) since all new

contributions to the solution are exact. We may rewrite (3.1) in the form

dX7 = RLsdX̃s + dφ, (3.5)

we notice that Ls are the same as in (2.12). The only change is in the exact 1-forms.

We may now analyze the contribution of the dX7 field to the hamiltonian. In addition

to its conjugate momentum, which appears quadratically we have

V7 =
〈
(DrX

7)2 + {Xm,X7}2
〉

=
〈
(LsDrX̃

s)2 + (Drφ)2 + {Xm,X7}2

〉
(3.6)

where we have explicitly used (3.2).

We then obtain the bound

V7 ≥
〈
(Drφ)2 + {Xm,X7}2

〉
≥ (Drφ)2 (3.7)

which directly shows that the winding corresponding to dX7 does not affect the qualitative

properties of the spectrum of (2.17). The first term in (3.6)

〈
Ls(DrX̃

s)2
〉

(3.8)

corresponds, for a given Ar, to the value of the original quadratic term
〈
(DrX

7)2
〉

in the

action evaluated at a configuration that minimizes it. This is the case, since in the usual

Dirichlet internal product

(A,B) =

∫

Σ

DrADrB (3.9)

defined on fields modulo constants, the exact and harmonic functions are orthogonal. Ex-

actly the same decomposition as in (3.6) occurs when evaluating the sum over isomorphisms

class of line bundles L in the partition function of an abelian gauge field. The sum over L

gives a generalized θ function [19, 20]. The third term in (23)contributes with L2
s to the co-

efficient of the quadratic mass terms (DsX
m)2 the total factor being (1+L2

s). The first term

– 6 –
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〈(
DrX̃

s
)2
〉

contains a complicated dependence on Ar, if one is interested in analyzing it is

better to start with the decomposition (3.1) instead of (3.5). For the purpose of our analysis

we may neglect this complicated positive term and consider the hamiltonian with a poten-

tial contribution given by the right hand side of (3.7). The inequality (3.7) will ensure that

the qualitative properties of the latest are also valid for the original complete hamiltonian.

We will now construct the dual formulation to (2.17) when dX7 is restricted by the

condition (2.6) ensuring that X7 takes values on S1. We follow [20], given

L = pIẊ
I + pẊ −H

(
pI ,X

I , p, x
)

(3.10)

where ∮

Cs

dX = RLs (3.11)

and the dependence on X is only through its derivatives ∂λX and construct
〈
L̂ + WλFµνǫλµν

〉
(3.12)

where

L̂ = pIẊ
I + pW0 −H

(
pI ,X

I , p,Wa

)
(3.13)

the elimination of W0, through its field equation or directly from a gaussian integral in the

functional integration, yields the dual action

L̃ = pIẊ
I + ΠaȦa + A0∂aπ

a −H
(

pI ,X
I , Fabǫ

ab,−1

2
ǫbaΠ

b

)
. (3.14)

It is already in a canonical hamiltonian formulation. The new hamiltonian is obtained

from the original one by making the above replacements. Notice that there is no assumption

on the structure of H, it is not necessarily quadratic. In our particular case the dependence

on p and Wa is quadratic. Condition (3.11) becomes now

∮

Cs

(
−1

2
ǫbaΠ

b

)
dσa =

1

R
ms (3.15)

where ms are integers.

We notice that As is not a connection in a line bundle over Σ. In fact the condition
∫

Σ

Fabdσa ∧ dσb = 2πn (3.16)

is not necessarily satisfied. In order to have a connection on line bundle over Σ one

should require a periodic euclidean time on the functional integral formulation. In that

case the condition (2.6), where now the basis of one-dimensional homology includes the

additional S1, ensures that Fµν is the curvature of a one-form connection over the three

dimensional base manifold. Under this assumption the condition (2.6) for any Ls implies

summation over all U(1) principle bundles. The contribution of this summation of the

partition function is a generalized θ function [19] arising from the evaluation of the abelian

action at minimizing configurations, that is monopole-type solutions [21].

– 7 –
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The final expression of the dual formulation to (2.17) when X7 is wrapped on a S1,

condition (2.6), is

Hd =

∫

Σ

√
Wdσ1 ∧ dσ2

[
1

2

(
Pm√
W

)2

+
1

2

(
Πr

√
W

)2

+
1

4
{Xm,Xn}2 +

1

2
(DrX

m)2

+
1

4
(Frs)

2+
1

2

(
Fab

ǫab

√
W

)2

+
1

8

(
Πc

√
W

∂cX
m

)2

+
1

8

[
Πc

√
W

∂c

(
X̂r+Ar

)]2

+ Λ

({
Pm√
W

,Xm

}
−Dr

(
Πr

√
W

)
− Πc

2
√

W
∂c

(
Fab

ǫab

√
W

))
+ λ∂cΠ

c

]

+

∫

Σ

√
W [−ΨΓ−ΓrDrΨ + Γ−Γm{Xm,Ψ} + 1/2ΨΓ7Π

b∂bΨ] + Λ{ΨΓ−,Ψ}

The term

1

2

(
Pm√
W

)2

+
1

4
{Xm,Xn}2 +

1

2

(
Fab

ǫab

√
W

)2

+
1

8

(
Πc

√
W

∂cX
m

)2

+ Λ

({
Pm√
W

,Xm

}
− 1

2

Πc

√
W

∂c

(
Fab

ǫab

√
W

))
+ λ∂cΠ

c

describe the canonical density of a Dirac-Born Infeld theory in terms of Gab = ∂aX
m∂bX

m

and Fab. In the full theory with the hamiltonian Hd, there are additional interacting terms

describing the coupling to the sector wrapped onto a T 6. We considered the M2 with all

physical configurations wrapped in an irreducible way on a T 6 × S1 target space. If we

now take the compactified sector of the target to be T 7 = (S1)7,we should then consider all

possible decompositions of the form T 6×S1.The Hilbert space of physical configurations is

then enlarged by considering all possible holomorphic immersions and their corresponding

physical states in terms of single valued fields over the base manifold, as explained in section

2. The breaking of susy induced by the ground state follows in the same way.

4. N = 1 supersymmetry

The topological condition associated to the central charge determines an holomorphic min-

imal immersion from the g-Riemann surface to the 2g-torus target manifold. This minimal

immersion is directly related to the BPS state that minimizes the hamiltonian. When we

start with the g = 1 and T 2 on the target space the ground state preserves 1

2
of the original

supersymmetry with parameter a 32-component Majorana spinor. When we consider our

construction for a g = 2, 3 and T 4, T 6 torus on the target, the analysis of the SUSY preser-

vation becomes exactly the same as when considering orthogonal intersection of 2-branes

with the time direction as the intersecting direction [22]. The SUSY of the ground state

preserves 1

4
, 1

8
of the original SUSY. The ground state in all these cases corresponds to

Ψ = 0 Xm = 0 Xr
i = X̂r

i (4.1)

The preservation of the ground state implies the breaking of the supersymmetry. In

the light cone gauge, we end up when g = 3 with 1

8
of the original SUSY, that is one

complex grassmann parameter corresponding to a N = 1 light-cone SUSY multiplet.

– 8 –
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The action is invariant under the whole light-cone SUSY. There is a whole class of

minima for the hamiltonian, corresponding to

Ψ = ǫ1 + ǫ2

Xr = X̂r + iǫ2Γǫ1

Xm = iǫ2Γ
mǫ1.

However when the vacuum is spontaneously fixed to one of them, the SUSY is broken

at the quantum level up to N = 1 when the target is M5×T 6. There is no further breaking

when we compactify the additional S1, to have a target M4 × T 6 × S1.

5. Discreteness of the spectrum

We consider a gauge fixing procedure on a BFV formulation of the theory. Several gauge

conditions are appropriate to analyze the qualitative properties of the spectrum. We may

impose as in ([6, 8]) a gauge choice once a normal basis of functions over Σ is introduced

in the theory. We may otherwise consider a Coulomb gauge condition DrAr = 0. We

may solve it in terms of longitudinal and transverse modes in the usual way, together with

a resolution of the first class constraint, the Gauss constraint. In this case once all the

canonical hamiltonian is expressed in terms of the transverse canonical modes one is left

with a positive but complicated term arising from the square of the momenta terms after

the decoupling of the longitudinal term has been obtained. It is of the form

DrΠ
LDrΠ

L (5.1)

where ΠL is the longitudinal part of the momenta Πr, and ΠL has to be replaced by the

solution of the constraint. In what follows we may eliminate such positive term, since

the discreteness of the lower bound operator ensures the same property for the original

hamiltonian. The same argument was used in [6].

We may also consider a gauge fixing condition

χ ≡ aDrAr + B (5.2)

where B is the BRST transformed of the antighost field while a is a real number which

can be chosen in a way to cancel the (DrAr)
2 contribution from the F2 term in the

hamiltonian. After a redefinition of B it decouples from the functional integral, we end up

with a canonical formulation in terms of the square of all the momenta together with the

quadratic mass terms for each mode in the formulation. An important aspect to mention

is that in all these cases the ghost fields do not decouple from the action, however the

contributions are always linear on the configuration variables. Theorem 2 in [23] ensure

that this ghost contribution does not change the discreteness properties of the canonical

formulation. The discussion of the spectral properties of the hamiltonian is then largely

simplified by those consideration. We may reduce to the physical degrees of freedom or

we may enlarge the phase space as in BFV canonical formalism, in both cases the analysis

– 9 –
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reduces to a Schröendiger operator with quadratic mass terms and positive potential. We

may consider for example,using (3.7)

Ĥ =

∫

Σ

√
W

[
1

2

(
Pm√
W

)2

+
1

2

(
P√
W

)2

+
1

2

(
Πr

√
W

)2

+
1

4
{Xm,Xn}2

+
1

4
{Xm,X7}2 +

1

2
(DrX

m)2 +
1

2
(Drφ)2 +

1

4
(Frs)

2 +
1

2
(DrAr)

2

]

where P is the conjugate momenta of φ, the contribution of the compactification on S1.

This hamiltonian is exactly of the form considered in [6, 8, 23]. We may then apply , for

a regularized version of it, the results developed there.

We consider, in the usual way, a decomposition of all scalar fields over Σ in terms of an

orthonormal discrete basis YA(σ1, σ2). It is relevant in this approach to consider a compact

closed Riemann surface Σ

Xm(Σ, σ, τ) =XmA(τ)YA(σ1, σ2)

Ar(Σ, σ, τ) =AA
r (τ)YA(σ1, σ2)

φ(Σ, σ, τ) =φA(τ)YA(σ1, σ2)

The symplectic bracket is also a scalar over Σ, hence it must be rewritten in terms of the

basis

{YA, YB} = fC
ABYC (5.3)

after defining ∫

Σ

YAYB = ηAB (5.4)

we get ∫

Σ

{YA, YB}YC = fABC , (5.5)

fABC are consequently completely antisymmetric. fC
AB are the structure constant of the

area preserving diffeomorphism. We then replace those expressions into the hamiltonian

density and integrate the σ1, σ2 dependence. We obtain then a formulation of the operator

in terms of the τ dependent modes only. We now consider a truncation of the operator,

that is we restrict the range of the indices A,B,C to a finite set N and introduce constants

fN C
AB such that

limN→∞fN C
AB = fC

AB (5.6)

In [2, 3], fN C
AB are the structure constants of SU(N), that is the truncated theory has

also a gauge symmetry. In [8] for the supermembrane with central charges compactified

on a T 2 the truncated theory in terms of SU(N) structure constants also has a gauge

symmetry. The algebra of first class constraints in both cases is the same. However, in

the proof of the discretness of the spectrum in [8] the algebraic properties of fN C
AB do

not play any role at all. We then proceed to the analysis of the spectrum of the truncated

Schröedinger operator associated to Ĥ without further requirements on the constants fN :

– 10 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
9

(i) The potential of the Schröedinger operator only vanishes at the origin of the config-

uration space:

V = 0 → ||(X,A, φ)|| = 0 (5.7)

where ||.|| denotes the euclidean norm in RL. We notice that the original hamiltonian

as well as Ĥ are defined on fields up to constants.

(ii) There exists a constant M > 0 such that

V (X,A, φ) ≥ M ||(X,A, φ))||2 (5.8)

Again, this bound arises from very general considerations. In fact, writing (X,A, φ) in

polar coordinates

X = Rx A = Ra φ = Rϕ (5.9)

where θ ≡ (x, a, ϕ) is defined on the unit sphere, ||(x, a, ϕ)|| = 1, we obtain

V (X,A, φ) = R2Pθ(R) (5.10)

where

Pθ(R) = R2k1(θ) + Rk2(θ) + k3(θ) > 0 (5.11)

with k3(θ) > 0, k1(θ) ≥ 0 and k1(θ) = 0 ⇒ k2(θ) = 0. We then define

µ(θ) = minRPθ(R), (5.12)

it is continuous in θ and µ(θ) > 0. Using the compactness of the unit sphere we obtain

V (X,A, φ) = R2Pθ(R
2) ≥ R2minθ = MR2 (5.13)

The Schröedinger operator is then bounded by an harmonic oscillator. Consequently

it has a compact resolvent. We now use theorem 2 [23] to show that

(i) The ghost and antighost contributions to the effective action,

(ii) the fermionic contribution to the susy hamiltonian,

do not change the qualitative properties of the spectrum of the hamiltonian. In fact, both

contributions are linear on the configuration variables.

In addition the susy contribution cancels the zero point energy of the bosonic oscillators

even in the exact theory [24, 10].

We have shown then that the regularized compactified on the target space M4×T 6×S1

has a compact resolvent and hence a discrete spectrum with finite multiplicity. We expect

the same result to be valid for the exact theory.
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6. Physical properties

So far we have seeing that the action of the N = 1 supermembrane in four dimensions has

a regularized discrete spectrum.

One of the characteristics of the theory is that due to the topological condition the

fields acquire mass. This facts represents an alternative to Higgs mechanism since no

Higgs particle is involved. There has been several mass generating mechanisms [25]–[28] in

the literature. Since ours does not correspond strictly speaking to non of them although

there are some resemblances, we will explain briefly just for the sake of clarity. In here,

the fields of the theory Xm, Ar, φ acquire mass via the vector fields X̂r defined on the

supermembrane. Since those fields do not live in the target-space there is no violation of

Lorentz invariance. In fact in resemblance with Scherk-Schwarz mechanism they induce

a monodromy on the fields. It is important to point out that the number of degrees of

freedom in 11D and in 4D is preserved, but just redistributed, contrary to the case of an

effective compactification a la KK, where a tower of fields appear. This fact has the a

advantage for many phenomenological purposes of maintaining the number of fields small.

One possible extra question is the analysis of moduli stabilization. Moduli are massless

scalar fields that may parametrize the compactified geometry as well as different matter

sectors. It can be distinguished two types of moduli: quantum moduli and classical moduli.

Quantum moduli of the theory, generically is not known although there has been some

approximations for particular set-ups in which the different bunch of these moduli show the

interpolation between different vacua with different gauge groups [29]. As we have pointed

out along the text, the theory of quantum supermembranes with central charges we have

constructed depends then on the moduli space of compact Riemanian surfaces Mg only. It is

defined on the conformal equivalent classes of compact Riemann surfaces, and also depends

on the moduli identifying the holomorphic immersion from Mg to the target manifold.

Generically the analysis of moduli fields have been performed at classical level in a

supergravity approach [13]–[15]. It has being performed in effective 4D potentials of the

supergravity approximations of M-inspired actions. The Kähler potential is expressed in

terms of them [12, 14]. Since our approach is exact these terms do not appear, however the

action posseses scalars that may lead to flat directions in the potential. We can distinguish

between two types of scalars fields, those associated to the position of the supermembrane

in the transverse dimensions, - analogous to what in String theory represent the open string

moduli- and the scalars whose vevs parametrize the compact manifold - analogous to what

in String theory represent the closed string moduli-.

We are going to analyze separately the two types of classical moduli. This decoupling

approach is only justified iff the scales of stabilization (the masses of the moduli) are clearly

different, otherwise the minimization with respect to the whole set of moduli (geometrical

and of matter origin) should be performed. An exhaustive analysis of this fact is beyond

the scope of this article. However some considerations still can be made:

At classical level the behaviour of the theory is known. The theory does not contain

any string-like configuration. Let assume for the moment a compact manifold whose radii

R1, . . . , R7 are fixed. The Xm that parametrize the position in the transverse dimensions
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of the supermembrane acquire mass due to the central charge condition so there are no flat

directions in the scalar piece of the potential. The 7-component component has an induced

effect due to the central charge condition through the quadratic coupling with the simplectic

gauge fields Ar and gain also an effective mass. All of these type of moduli becomes stable.

So far we have considered the 7-torus to be rigid, in such a way that the R1 . . . , R7 are

kept fixed and they do not appear in the metric (they would be the putative closed string

moduli). If now we relax this condition and let them vary smoothly, we can ask ourselves if

in principle it is possible to obtain a minimum. An heuristical argument to support moduli

stabilization is the following: We are dealing in our construction with non trivial gauge

bundles that can be represented as worldvolume fluxes [30]. Since for construction the

mapping represent a minimal immersion on the target space they induce a similar effect

that the one induced by the generalized calibration. Minimal calibrations take also into

account the dependence on the base manifold, the Rieman surface chosen Σ. The condition

of the generalized calibration -which shows the deformation of the cycles that are wrapped

by the supermembrane- represent a condition for minimizing the energy [31]. It happens

the same with the minimal inmersions. For a given induced flux,one may expect the volume

to be fixed. The supermembrane with central charges is wrapping all of the 7-torus with the

maximal amount of monopoles induced on it, so the overall geometric moduli in principle

will be also stabilized.

Let us illustrate it, with the particular case of an isotropic torus, i.e. R1 = · · · = R7 =

R0. We then obtain for the potential in Ĥ, the following expression

V = A + BR0 + CR2

0 + DR4

0 (6.1)

where A ≥ 0, C ≥ 0 and D > 0, with the following expressions

D =
1

4

∫

Σ

√
W{X̂r, X̂s}2

C =
1

2

∫

Σ

√
W [(DrX

m)2 + (Drφ)2 + (DrAs)
2 + {Xm, X̂sLs}2]

B =

∫

Σ

√
W

[
1

2
{Xm, LsX̃

s}{Xm, φ} + DrX
m{Ar,X

m} + Drφ{Ar, φ}

+
1

2
(DrAs − DsAr){Ar, As}

]

A =

∫

Σ

√
W

[
1

4
{Xm,Xn}2 +

1

4
{Xm, φ}2 +

1

2
{Ar,X

m}2 +
1

2
{Ar, φ}2 + {Ar, As}2

]

where we have extracted the R0 factor from the expression of the derivative Dr.

The quadratic mass terms contribute to the expression of C. C is zero if and only if

(Xm, φ,As) are constants, in the equivalence class of zero. We obtain

d2V

dR2
0

= 2C + 12DR2

0 > 0 (6.2)

consequently the problem is always stable with respect to the variations of R. We may

have two possible minima: a minimum centered at R0 = 0, or a minimum for R0 6= 0. The

potential is globally stable with respect to the modulus R0.
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In the cases in which the radii are all different a more exhaustive analysis is need. We

will consider it elsewhere.

7. Conclusion

We obtained the action of the D=11 supermembrane compactified on T 6 × S1 with non-

trivial central charge induced by a topological condition invariant under supersymmetric

and kappa symmetry transformations. The hamiltonian in the LCG is invariant under

conformal transformations on the Riemann surface base manifold. The susy is sponta-

neously broken, by the vacuum to 1/8 of the original one. It corresponds in 4D to a N = 1

multiplet. Classicaly the hamiltonian does not contain singular configurations and at the

quantum level the regularized hamiltonian has a discrete spectrum, with finite multiplicity.

Its resolvent is compact. The potential does not contain any flat direction on configuration

space nor on the moduli space of parameters. The hamiltonian is stable on both spaces.

It is stable as a Schrodinger operator on configuration space and it is structurable stable

on the moduli space of parameters.
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